(RNS) (2011-12 and Onwards) **MATHEMATICS** M - 201 : Algebra - II

Time: 3 Hours

Instructions : i) Answer any five(5) full questions choosing at least two from each Part. ii) All questions carry equal marks.

II Semester M.Sc. Degree Examination, June 2015

PART-A

1.	a)	Let K be an extension of a field F and $a \in K$ be algebraic over F and of degree n. Prove that $[F(a):F] = n$.	6
	b)	Prove that every finite extension K of a field F is algebraic and may be obtained from F by the adjunction of finitely many algebraic elements.	6
	c)	Prove that $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$.	4
2.	a)	Let $p(x)$ be a polynomial in $F[x]$ of degree $n \ge 1$ and is irreducible over F, then prove that there is an extension E of F such that $[E : F] = n$, in which $p(x)$ has a root.	6
	b)	Define splitting field of a polynomial over a field F. Determine the splitting	
		field of $x^2 + \alpha x + \beta$ over the field Q and hence verify $s(x^2 + 2 : Q) = Q(\sqrt{2} i)$. 5
	c)	If 'p' is a prime number, prove that the splitting field over F, the field of rationals, of the polynomial $x^p - 1$ is of degree $p - 1$.	5
3.	a)	Prove that a regular pentagon is constructible by using straight edge and compass.	6
	b)	Prove that a polynomial $f(x) \in F[x]$ has a multiple root if and only if $f(x)$ and $f'(x)$ have a non-trivial common factor.	5
	c)	If F is a field of characteristic zero and a, b are algebraic over F, then prove that $F(a, b)$ is a simple extension of F.	5
4.	Sta	ate and prove the fundamental theorem of Galois theory.	16

Max. Marks: 80

P.T.O.

PG-816

6

4

4

4

8

PART-B

- 5. a) If A is an algebra with unit element over F, then show that A is isomorphic to a subalgebra of A(V) for some vector space V over F.
 - b) Give an example to show that an element in A(V) is right invertible but not invertible.
 - c) If V is a finite dimensional vector space over F and T, $S \in A(V)$ with S regular, then prove that both T and STS^{-1} have the same minimal polynomial over F. 6
- 6. a) If $\lambda_1, \lambda_2, \dots, \lambda_k$ in F are distinct characteristic roots of $T \in A_F(V)$ and if V_1, V_2, \dots, V_k are characteristic vectors of T belonging to $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively, then prove that V_1, V_2, \dots, V_k are linearly independent.
 - b) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then for any $q(x) \in F(x)$, prove that $q(\lambda)$ is a characteristic root of q(T).
 - c) Let F be a field and let V be the set of all polynomials in X of degree 3 or less over F. On V let D be defined by $(\beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3)D = \beta_1 + 2\beta_2 x + 3\beta_3 x^2$. Let M₁(D) be the matrix in the basis {1, x, x², x³} and let M₂(D) be the matrix in the basis {1, 1+x, 1+x², 1+x³}. Find a matrix G such that M₂(D) = Cm₁(D)C⁻¹. 8
- 7. a) If $T \in A(V)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix T is triangular.
 - b) Define a nilpotent transformation. If $T \in A(V)$ is nilpotent, of index n_1 , then prove that there exists a basis of V such that the matrix of T in this basis has the form.

where $n_1 \ge n_2 \ge 1, \dots \ge n_r$ and $n_1 + n_2 + \dots + n_r = \dim_F V$. **8**

- a) Define a unitary transformation T. Prove that linear transformation, T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.
 - b) State and prove Sylvester's law of inertia.

6

10