II Semester M.Sc. Degree Examination, June 2015
 (RNS) (2011-12 and Onwards)
 MATHEMATICS
 M - 201 : Algebra - II

Time : 3 Hours
Max. Marks : 80

> Instructions: i) Answerany five(5) full questions choosing at least two from each Part.
> ii) All questions carry equal marks.
PART - A

1. a) Let K be an extension of a field F and $a \in K$ be algebraic over F and of degree n. Prove that $[F(a): F]=n$.
b) Prove that every finite extensionK of a field Fis algebraic and may be obtained from F by the adjunction of finitely many algebraic elements.
c) Prove that $Q(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3})$.

4
2. a) Let $p(x)$ be a polynomial in $F[x]$ of degree $n \geq 1$ and is irreducible over F, then
prove that there is an extension E of F such that $[E: F]=n$, in which $p(x)$ has
a root.
b) Define splitting field of a polynomial over a field F. Determine the splitting field of $x^{2}+\alpha x+\beta$ over the field Q and hence verify $s\left(x^{2}+2: Q\right)=Q(\sqrt{2} i)$.
c) If ' p ' is a prime number, prove that the splitting field over F, the field of rationals, of the polynomial $x^{p}-1$ is of degree $p-1$.
3. a) Prove that a regular pentagon is constructible by using straight edge and compass. 6
b) Prove that a polynomial $f(x) \in F[x]$ has a multiple root if and only if $f(x)$ and $f^{\prime}(x)$ have a non-trivial common factor. 5
c) If F is a field of characteristic zero and a, b are algebraic over F, then prove that $F(a, b)$ is a simple extension of F. 5
4. State and prove the fundamental theorem of Galois theory. 16
5. a) If A is an algebra with unit element over F, then show that A is isomorphic to a subalgebra of $A(V)$ for some vector space V over F.

6
b) Give an example to show that an element in $\mathrm{A}(\mathrm{V})$ is right invertible but not invertible.
c) If V is a finite dimensional vector space over F and $\mathrm{T}, \mathrm{S} \in \mathrm{A}(\mathrm{V})$ with S regular, then prove that both T and STS^{-1} have the same minimal polynomial over F .
6. a) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ in F are distinct characteristic roots of $T \in A_{F}(V)$ and if V_{1}, $\mathrm{V}_{2}, \ldots ., \mathrm{V}_{\mathrm{k}}$ are characteristic vectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots \ldots . ., \lambda_{\mathrm{k}}$ respectively, then prove that $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots ., \mathrm{V}_{\mathrm{k}}$ are linearly independent.
b) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then for any $q(x) \in F(x)$, prove that $\mathrm{q}(\lambda)$ is a characteristic root of $\mathrm{q}(\mathrm{T})$.
c) Let F be a field and let V be the set of all polynomials in X of degree 3 or less over F. On V let D be defined by $\left(\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}\right) D=\beta_{1}+2 \beta_{2} x+3 \beta_{3} x^{2}$. Let $M_{1}(D)$ be the matrix in the basis $\left\{1, x, x^{2}, x^{3}\right\}$ and let $M_{2}(D)$ be the matrix in the basis $\left\{1,1+x, 1+x^{2}, 1+x^{3}\right\}$. Find a matrix G such that $M_{2}(D)=C m_{1}(D) C^{-1}$.
7. a) If $T \in A(V)$ has all its characteristicroots in F, then prove that there is a basis of V in which the matrix T is triangular,

8

b) Define a nilpotent transformation. If $T \in A(V)$ is nilpotent, of index n_{1}, then prove that there exists a basis of V such that the matrix of T in this basis has the form.

where $n_{1} \geq n_{2} \geq, \ldots \geq n_{r}$ and $n_{1}+n_{2}+\ldots+n_{r}=\operatorname{dim}_{F} V$.
8. a) Define a unitary transformation T . Prove that linear transformation, T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V .
b) State and prove Sylvester's law of inertia.

